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On a Compromise Solution for Solving Multi- 
Objective Convex Programming Problems   

Alia Youssef Gebreel 
 

Abstract— This paper presents an alternate method to find an evenly efficient solution for all weights of multi-objective convex programming 

problems with conflicting objectives. The main idea behind the proposed methodology is to combine the attractive features of both the hybrid 

method and normal- boundary intersection method. This approach is called Alia’s method, and its solution is expressed as Alia point. This point is 

the best efficient point or very close to it in the efficient front.  

Index Terms— Multi- objective optimization problem (MOP); efficient solution; utopia point; Normal- Boundary Intersection (NBI); and the   

hybrid method (HP). 

——————————      —————————— 

1 INTRODUCTION                                                                     

multi- objective (or multicriteria, or multi-performance)                    

optimization problem has a number of objective func-

tions which are to be minimized or maximized. If all ob-

jective functions and constraint functions are linear, the result-

ing multi- objective optimization problem (MOP) is called a    

multi- objective linear program (MOLP). However, if any of 

the objective or constraint functions are nonlinear, the result-

ing problem is called a nonlinear multi- objective problem. 

Multi- objective optimization is sometimes referred to as     

vector optimization problem (VOP), because a vector of objec-

tives, instead of a single objective, is optimized [10, 11]. 

The term vector optimization is sometimes used to denote the 

problem of identifying the efficient set. However, this is not 

always enough. We want to obtain only one solution; this 

means that we must find a way to put the efficient solutions in 

a complete order.  

In general, multi-objective optimization problems are solved 

by scalarization. Scalarization means converting the problem 

into a single or a family of single objective optimization prob-

lems with a real-valued objective function, termed the scalariz-

ing function, depending possibly on some parameters [10]. 

These objectives are usually in incommensurate and conflict-

ing with one another, there normally exist: 

1-  Infinite number of efficient (non- dominated, Pareto- opti-

mal, or non-inferior) solutions in the MOPs. The problem is 

how to search for a best compromise solution with these 

multiple objectives being considered simultaneously. 

2-  Not all objectives can simultaneously arrive at their optimal 

levels. So, an assumed utility function is used to choose ap-

propriate solutions [2, 8, 18]. 

Over the past years, many researches provide different ap-
proaches to improve the ability of extracting efficient solu-
tions. 

Generally, gradient-based methods for solving multi-objective 

optimization problems (e.g., weighted method, epsilon con-

straint method, and Normal Boundary Intersection (NBI)) re-

quire solving at least one single-objective optimization prob-

lem for each Pareto optimal point, and thus solving many 

problems to find the Pareto frontier. These methods can be 

computationally expensive with an increase in the number of 

variables and/or constraints of the optimization problem [16]. 

When this work focuses on improving the NBI method, the 

elicitation of an efficient solution in the efficient set is given. 

So, this research deals with a novel methodology for practical 

implementation of convex multicriteria optimization prob-

lems. It combines the hybrid method with NBI by a new direc-

tion of search. Where, both methods have strong and weak 

points: 

 Gradient-based methods have high convergence to local a 

Pareto front, but a low ability to find the global Pareto fron-

tier and disjoint parts of a Pareto frontier; 

 Hybrid method has a strong ability to find the global opti-

mal solutions, but it may be difficult to specify the parame-

ter values for the objective functions [9, 17].  

It is clear that creating such an optimization methodology 

which combines the strong points of both approaches is the 

more efficient solution.  

This paper presents the fundamental theories, the method, 

and examples that illustrate the favorable efficient solution for 

the decision maker. 

The rest of this paper is organized as follows. Problem formu-
lation is presented in section 2. Basic concepts are treated in 
section 3. In section 4, the proposed method for solving the 
multi- objective convex programming problems is described in 
detail. To demonstrate the performance of this method, some 
examples involving linear and non- linear convex MOPs have 
been simulated in section 5. Finally, section 6 concludes this 
research. 
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2 PROBLEM FORMULATION 

         Consider the following multi-objective nonlinear pro-

gramming problem: 

(MOP): Min F(x) = ( f1(x),  f2(x), ...…, fk(x) )    ,   k  ≥ 2,                 

             Subject to   

             M= {x  Rn / gr (x) ≤ 0, r =1,2,…..,m}.                         

Where, fi (x), gr (x), i =1,2,…..,k,  r =1,2,…..,m are continuous 

functions of class C(1) on Rn (the first order partial differential 

exists and continuous).  

The set M is assumed to satisify Slater constraint qualification 

(or in other constraint qualification) [12, 15]. 
Assume that  
fi(xi*) = min fi(x),  i= 1,2,…, k, 

               x  M.  

3 BASIC CONCEPTS AND DEFINITIONS 

Let us introduce some terminology: 

 
3.1 Efficient Solution 

A decision vector x*  S is said to be an efficient solution if 

there does not exist another decision vector x  S such that 

fi(x) ≤ fi(x*) for all i = 1, 2, …… , k and fj(x) < fj(x*) for at least 

one index j. 

3.2 Efficient Front 

 The collection of all Pareto- optimal solutions is called the 
Pareto- optimal set. The image of the Pareto- optimal set by F 
is referred as the Pareto- optimal front (efficient frontier or 

tradeoff surface) [9, 14]. 

3.3 Utopia Point 

The point (f1(x1*), f2(x2*), ... , fk(xk*)) in the objective space is 

called the Utopia point. 

3.4 Utopia Line 

The line joining two optimal points in bi-objective case is 
called the Utopia line [1]. 

3.5 Utopia Hyperplane 

The plane passing through the points f(xi*), all i = 1, 2, … , k in 

the objective space is called the Utopia hyperplane. 

3.6 Utopia Hypersphere 

A sphere of center the utopia point and any positive radius in 
the objective space is called a Utopia hypersphere. 

3.7 Alia Line 

The line passing through the utopia point and perpendicular 

to the utopia hyperplane is called the A line. The figure (1) 

illustrates this definition. 

3.8 Alia Point  

 The point of intersection of the A line and the efficient front is 

called the A point. 

3.9 Best Efficient Point  

      The best efficient point on the efficient front that has the 

shortest distance from the utopia point is called the B point. It 

is clear that, it is the point of common adjacent between the 

efficient front and a utopia hypersphere. In this case, the radi-

us is the best. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

3.10  Distance of Alia Point (dA)  

Given A point and the utopia point, the distance (d) between 

these two points is given as follows:  

dA  ≡ d (A point, utopia point ).                                       (1) 

3.11  Distance of the Best Efficient Point (dB) 

Given B point and the utopia point, the distance between the-

se two points is given as follows:  

dB  ≡ d (B point, utopia point ).                                       (2) 

3.12  Normal Boundary Intersection Method  

      Das and Dennis (1998) proposed the Normal Boundary 

Intersection (NBI) method where a series of single- objective 

optimizations is solved on normal lines to the utopia line. The 

NBI method gives fairly uniform solution and can treat prob-

lem with non- convex region on the Pareto front. It achieves 

this by imposing equality constraints along equally spaced 

lines or hyperplanes in multidimensional case [7]. 
NBI is a two- step method:  
 1- For all individual objective fi, i {1, 2, …, k} the respective 
global minimizes xi*  R are determined. 
     2- The Convex Hull of the Individual Minima in the objec-
tive space called CHIM, i.e., the convex hull of the vectors 
{f(x1*), … , f(xk*)}  can be expressed by means of the matrix     
Φ= (f (x1*), f (x2*),.., f (xk*))       Rk,  Rk×k as {Φw/ w Rk,       
Σi=1k  wi = 1, wi  ≥ 0}. Where, Φw denotes the starting point on 
the CHIM-simplex. By varying the weight vector w, i.e; by 
varying the starting point on the CHIM- simplex and by solv-
ing the resulting NBI substituting problems a subset of the 
efficient set can be generated.  
 Optimization Problem (NBI Substituting Problem):  
 (NBI):  Min  δ   (with the additional constraint)   
              Subject to  

 

Alia 

point Utopia line 

 

                       

 

Utopia point 

 

Origin point 

 

Alia line 

 

CHIM 

 

Fig.(1) The conflicting two optimal objective vectors and 

Alia line in a  multi- objective problem. 
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                                Φw + N. δ = F(x), 

                                x  S                                                                      
The following figure illustrates the CHIM- simplex in the 

bicriteria case. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
Where, N is the normal to the CHIM- simplex pointing to-

wards the origin, and δ  R represents the set of points on that 

normal. Then the point of intersection between the normal and 

the boundary of objective functions closest to the origin is the 

solution of the problem [3, 4, 5, 6, 16]. 

3-13 Payoff Table: 

        A payoff table can be formed as shown in Table (1). It 

constructs by using the decision vectors obtained when calcu-

lating the ideal objective vector. Column i of the payoff table 

displays the values of all the objective functions calculated at 

the point where fi obtained its minimal value. Hence, zi* is at 

the main diagonal of the table. The maximal value of the row i 

in the payoff table can be selected as an estimate of the upper 

bound of the objective fi for i =1 ,… ..., k over the Pareto opti-

mal set [5, 9]. 

 

 
3-14 Hybrid method: 

        It is well known that the efficient solutions of (MOP) 

could be generated via the hybrid approach repesented by the 

following problem [9]:  
(HP):   Min   ∑i=1 k wi fi(x) 
           Subject to  
           fi(x) ≤  i   for all i = 1, 2, ..., k, 

           x  M 

where,  wi > 0, i= 1, 2, ..., k,  ∑i=1 k wi =1, and i  R, i = 1, 2, ... , k 
which are chosen such that problem (HP) is feasible. 

Problems (MOP), (HP) are related to each other by the follow-
ing theorem [9, 18]. 

Theorem 1:   

A point   M is an efficient solution of (HOP) iff  is an 

optimal solution of problem (HP) for a certain wi > 0, feasi-

ble ℓ, i, ℓ =1, 2, ... , k. 

4 Alia’s Method          

       Alia’s method is produced to solve multi-objective convex 

programming problems for all weights with conflicting objec-

tives. It can be regarded as a general case of the value function 
for providing only one efficient solution. Its solution is called 
Alia point. This method combines the main positive features 
of the hybrid method and NBI method. It scalarizes a set of 
objectives and controlling variable “δ” multiplying by (‖N‖2) 
into a single objective. On other hand, all objectives and the 
normalized controlling vector “Nδ” are converted into con-
straints by setting a lower bound to each of them in minimiz-
ing problem. The lower bound is the optimal value of each 
objective. It is depended on the normal of objective vectors. A 
point is the best point or comes very close to the B point based 
on its distance of the utopia point. 

4-1 The steps of the proposed methodology: 
The steps of this methodology are summarized as follows: 

1- Calculate the individual minima (or maxima) fi* of the per-

formances fi with i = 1,2,……….…, k, which are determined 

from solving the MOP for all individual objective fi.   

2- Construct the Pay-off matrix. 

3- Determine the normal of objective vectors (N). 

4- Solve the proposed formulation to obtain an efficient solu-

tion. Then, A point is the optimal solution for Alia’s model for 

all weights, and a compromise solution for minimizing (or 

maximizing) the MOP. 

Now, consider the following problem denoted as (AP). 

(AP):  Min  ( ∑i=1 k wi fi(x) + ‖ N‖2 δ ),  

           Subject to  

           fi (x) – ni δ ≤ fi*,        i = 1, 2, 3, ... , k,           
            x  M, 
Where: 
x = (x1, x2, …., xn) is a vector of the decision variables, n is the 
number of  the decision variables.  
w1, w2, ……, wk are the weights of the objective functions fi (x),  
wi > 0, i= 1, 2, ..., k,  ∑i=1 k wi =1. 
k is the No. of objective functions. 
N = ( n1, n2, … , nk ) is the normal vector directed in the positive 
direction to the utopia hyperplane.    
Nδ is the normalized controlling vector.   

fi* is the optimum value of  fi(x) over M, i = 1, 2, 3,…., k,  

δ is a  real variable; variable is clearly positive due to the     
feasibility of the constraints. 
It is clear that the constraints of problem (AP) satisfy the Slater 
constraints qualification.   

Table (1) Pay- off table 

Data (x1*) (x2*) … ... (xi*) 

f1 f1(x1*)  f1(x2*) … ... f1(xi*) 

f2 f2(x1*) f2(x2*)  … ... f2(xi*) 

. 

. 
. 
. 

. 

. 
. 
. 

. 

. 

fi fi(x1*) fi(x2*) … ... fi(xi*)  

 

 

f(x1*) 

f(x2*) 

f(x1*) 

f(x2*) 

CHIM 

N 

F* 

Φw 

 

 

Fig. (2) Pareto- optimal front for a two- objective problem. 
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Formulating the Kuhn- Tucker (K. T) conditions for problems 
(HP), and (AP), the relation between the two problems will be 
clear: 

(1)  Kuhn- Tucker conditions for problem (HP): 

 

 

j = 1, 2, 3,…., n,                                                               (3)          

ui (fi (x) - i) = 0,            i = 1,2,…., k,                         (4)          

νr gr (x) = 0,                     r =1,2,…..,m,                        (5) 
fi(x) ≤  i,                         i = 1,2,.…, k,                          (6) 
gr (x) ≤  0,                       r =1,2,…..,m,                         (7) 
ui ≥ 0,                               i = 1,2,.…, k,                          (8) 
νr  ≥ 0,                              r =1,2,…..,m,                         (9) 
∑i=1 k  wi = 1,  wi > 0,   i = 1, 2,.., k.                           (10) 
 
(2)  Kuhn- Tucker conditions for problem (AP) 
 
 
 
 j = 1, 2, 3,…., n,                                                         (11) 
∑i=1 k  ni  µi =‖N‖2,                                                     (12) 

fi (x) – ni δ ≤ fi*,                    i = 1, 2, 3, ... , k,         (13)  
gr (x) ≤  0,                              r =1,2,…..,m,             (14) 
µi (fi (x) – ni δ – fi*) = 0,        i = 1, 2, 3, ... , k,         (15) 
αr gr (x)=0,                            r =1,2,…..,m,              (16)                    
µi  ≥ 0,                                    i = 1, 2, 3, ... , k,                (17) 

αr  ≥ 0,                                    r =1,2,…..,m,              (18)       
Lemma 1: 

If for  = ( 1, 2, … , k) > 0, ( , , ,  ) satisfies the 

Kuhn- Tucker conditions (2), then for  > 0, there exists a fea-

sible  = ( 1, 2, …, k ), such that  ( , ,  ) satisfies the 

Kuhn- Tucker conditions (1). 

Proof: 

Let for  > 0, the point ( , , ,  ) satisfies the Kuhn- Tuck-

er conditions (2), then it is clear from the formulation of the 

Kuhn- Tucker conditions for problems (HP), and (AP) that if 

we take i= ni – fi*, i = 1, 2, 3, ... , k, then   will be feasible for 

Kuhn- Tucker conditions (1). Also, it evident that  = ,  = , 

and hence ( , ,  ) satisfies the Kuhn- Tucker conditions (1).  

Lemma 2: 
Let the constraints of problem (AP) satisfy Slater constraints 
qualification (on any other constraints qualification) [12]. If for 

 > 0, ( , ) is an optimal solution of problem (AP), then  is 
an efficient solution of problem (MOP).  
Proof: 

Let ( , ) be an optimal solution of this problem for  > 0. 

Then from the necessary optimality theorem of nonlinear 

problem [12, 13], it follows that  ,  > 0 such that ( , , ,  ) 

satisfy the Kuhn- Tucker conditions (2) and hence by Lemma 

1, ( , ,  ) satisfy the Kuhn- Tucker conditions (1) for  > 0, 

and feasible . 

From the sufficient optimality theorem of nonlinear prob-

lem [12, 13], it follows that  is an optimal solution of problem 

(HP) for  > 0, and feasible . Hence from theorem 1, we de-

duce that  is an efficient solution of problem (MOP). 

4-2 Existence of Alia point: 

      Alia point must pass the normal and the convex hull of 

individual minima (CHIM). As shown in Fig. (3), this point is 

indicated for two dimensions problem. Where, it is located at 

the intersection of A line "pointing from the utopia point to-

wards the utopia line in 2D" and CHIM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 1: 
This definition shows the existence of A point in the efficient 

set for any (VOP), whether these objectives are conflicting or 

not conflicting. 

Theorem 2:  

 If for  > 0, ( , ) is an optimal solution of problem (AP) such 

that fi ( ) – ni   = fi*, i = 1, 2, 3, ... , k, then  will be an Alia 

efficient point for problem (MOP).  

Proof: 

Let for  > 0, ( , ) be an optimal solution of problem (AP). 

Then from Lemma 2, it follows that  is an efficient solution of 

problem (AP). Since,  satisfies the relation fi ( ) – ni  = fi
*,        

i = 1, 2, 3, ... , k, then from the definition of A efficient point, it 

is clear that  is an Alia efficient point and in this case           

dA = ‖N‖δ.                                                                                  (19) 
4-3 Uniqueness of Alia point 

Alia’s method develops for supporting the decision maker to 

= 0, + ∑ i=1
k  µi +∑ r =1

m  αr   ∑ i=1
k wi 

            ∂ fi (x)                       ∂ fi (x)                          ∂ gr (x)                                             
              ∂ xj                                ∂ xj                                ∂ xj                    

 

  f2* 
Fig. (3- b) 

Fig. (3) A graphical representation of Alia point for bi- objec-

tive problem in non-conflicting and conflicting objectives, 

respectively. 

Alia line 

f2 

 

 f1* 

         The utopia point 

  Alia point 

 

 
f(x2*) 

 

f(x1*) 

 

The utopia point  

and Alia point 

 
Fig. (3- a) 

f1 
 

+ ∑ i=1
k  ui +∑ r =1

m
  νr = 0, ∑ i=1k wi              ∂ fi (x)                        ∂ fi (x)                          ∂ gr (x)                                            

               ∂ xj                              ∂ xj                                 ∂ xj                   
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find A point. This point is only one efficient solution regard-

less of the number of Pareto- optimal points.  

 Theorem 3: 

Assume that all the objective functions of problem (MOP) are 

conflicting with each other, then for any w > 0, only one Alia 

point of problem (MOP) could be generated from problem 

(AP). 

Proof:  

Utilizing the result of theorem 2 and assume that for another 

w* > 0, (x*, δ*) is an optimal solution of problem (AP) such 

that  

fi (x*) – ni δ* = fi*, i = 1, 2, 3, ... , k.                             (20) 

Then, x* is an efficient solution of problem (MOP), and we 

have either one of the following two cases. 

(1) δ*  ≤   : 

In this case fi (x*) ≤ fi ( ), i = 1, 2, 3, ... , k, and this contradicts 

the efficiency of . 

(2)  δ*  >  : 

In this case fi ( ) < fi
 (x*), i = 1, 2, 3, ... , k, and this contradicts 

the efficiency of x*. 

Therefore, for any w > 0, there is only one optimal solution of 

problem (AP) satisfying the condition fi (x*) – ni δ = fi*, i = 1, 2, 

3, ... , k. 

This means that there is only one unique A point, which could 

be generated from problem (AP). By this way the theorem is 

proved. 

The relation between the optimality of (AP) and efficiency of 

(MOP) problems can be illustrated as shown in the following 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remarks 2: 

1) Assume that ℓ of the objective functions fi (x), i = 1, 2, 3, ... , 

k. Say Fk-ℓ+1, Fk-ℓ+2, ... , Fk are nonconflicting with each other 

objectives then these objectives are eleminated from problem 

(MOP) and in this case A point may be nonunique for problem 

(AP). 

2) For some multi- objective nonlinear programming porblems 

A point is the best point, and for some others A point is not 

the B point. But in such cases dA, and dB are too close to each 

other. 

 3) A point can be extracted easily when the weights are 

equals.       

5 Some Illustrative Examples  

      The following linear and nonlinear MOP examples are in-

troduced to clarify the proposed method.  

Example 1: 

Consider the following multiobjectives problem: 

Min ( x, y, -x-3y, 2x2 - 4y ), 

Subject to 

x+ y ≥ 2,  

-x+ y ≤ 2, 

3x+ y≤ 6,   

x ≥ 0, y ≥ 0. 

For this example, let f1= x, f2  = y,  
f3= -x -3y, f4= 2x2- 4, then 
f1

*= 0 attained at the point (0, 2), 
f2

*= 0 attained at the point (2, 0), 
f3

*= -10 attained at the point (1, 3), 
f4

*= -10 attained at the point (1, 3), 
Fig. (5) Shows these individual optimal solutions.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is clear that f3, f4 are nonconflicting, then we can omitt one of 

them from the problem, and then N= (1, 3, 1). 

If we omitt f4, A point is the efficient solution ( ,  ).  

But if we omitt f3, A point is the efficient solution (0.3713325,  

2.371332). 

However, the Ad for the two points, based on three objectives, 

are:  d1= 3.015, d2= 2.527. 

Note that:  
If we take N= (1, 3, 1, 1) for all four objectivesof the prolem 

with different weights, the resulted efficient solutions are ( , 

 

Fig. (4) The relation between the optimality of (AP) and   

efficiency of (MOP) problems. 
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Fig. (5) The decision space of the example (1). 
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 ) and (0.76923, 2.76923). The Ad for the two points; based on 

four objectives together; is: d1= 3.105, d2= 3.02,  respectively. 
Example 2: 

Min ( x, y), 

Subject to    x2  +  y2 ≤ 1. 

 

 

 

 

 

 

 

As seen in Fig. (6), the normal vector N = (1, 1),  

A point = B point = ( , ), and dA= dB=1. 

Where, dA =‖N‖ δ =  δ 

Example 3: 

Min ( x, y), 

Subject to 

2x+ y ≥ 4,    2x+ 3y ≥ 8,    

 x+ y ≤ 4,    x ≥ 0,    y ≥ 0. 

When this example is solved as depicted in Fig.(7), we find       

N= (1, 1), 
A point = (1.6, 1.6), dA = 2.263,  

B point = (  ,  ), dB = 2.219.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4: 

Min (-y +x2, 2y- x), 

Subject to 

x+ y ≤ 1,    x ≥ 0,    y ≥ 0. 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 

 

        

 

 

 

 

As shown in the above figure and by solving this example 

using the proposed method: 

 N= (3, 2),   

A point = (0.281, 0), dA= 1.296, 

B point = (0.313, 0), dB= 1.295. 

6 CONCLUSION 

       This paper presents Alia’s method for solving multi-     

objective convex programming problems that depends on the 

normal of objective vectors. It yields Alia point that is an effi-

cient point in the efficient front when all the objectives of the 

MOP are conflicting to each other. This point is the best effi-

cient solution or comes very close to the best solution based on 

the distance of the utopia point. So, it helps the decision maker 

to overcome the difficulties of selecting a solution from the 

efficient set that he/ she wants to it. When solving MOP with 

equal weights, A point is as the original problem's solution or 

better than it.  

       In this method, the search’s area to find the solution is less 

than that in other methods. Also, it can be regarded as a     

general case of the value function. Finally, this method of 

handling multiple criteria optimization problems gives a di-

rection toward future research from a viewpoint of practical 

implementation.  

 

 
 
 
 
 
                 
               
 
 
 
 
                     
 
 
 
 
           
 
 
 
 

Fig.(6) The decision and objective spaces of the 

example (2). 

 

(-1, -1) 

(-1, 0) 

(0, 0) 

(0, -1) 

y 

x 
  

 

C 
H 

I M 

 

 

 

The decision space 

 

Fig. (8- a) 

 

 

 

                                         
 

f1
* 

 

f2
* 

 

(-1, -1) 

(-1, 2) 
 

(1, -1) 
 

Fig.(8) The decision and objective spaces of 

the example (4). 

 

The objective space 

0 

Fig. (8- b) 

 

 

       

 

         

 

y 
 

        Fig.(7) The decision and objective spaces of the  

example (3). 
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